Open
Close

Импульсный бп. Импульсные блоки питания. Виды и работа. Особенности и применение. Применение импульсных блоков

Представляет собой инверторную систему. В нем происходит выпрямление переменного входного напряжения. Далее постоянное напряжение, полученное в результате предыдущей операции, преобразуется в импульсы прямоугольной формы с повышенной частотой и определенной сжатостью либо в импульсы, подаваемые напрямую на выходной фильтр низких частот или на трансформатор.

Конструктивные особенности

Простой импульсный блок питания может включать в свой состав малогабаритные трансформаторы, что объясняется довольно просто: с ростом частоты эффективность работы трансформатора повышается, а требования к габаритам сердечника, необходимым для передачи соответствующей мощности, заметно уменьшаются. Чаще всего подобный сердечник выполняется из ферромагнитных сплавов, а для тех устройств, что работают с низкой частотой, применяется электротехническая сталь.

За счет чего прибор обеспечивает стабильность?

Импульсный блок питания функционирует так, что напряжение в нем стабилизируется за счет отрицательной обратной связи. С ее помощью можно осуществлять поддержку выходного напряжения на примерно одинаковом уровне, вне зависимости от величины его нагрузки и колебаний на входе. Обратная связь может быть организована одним из нескольких способов. Если используется импульсный блок питания с гальванической развязкой от сети, то самыми распространенными способами может стать использование связи при помощи одной из обмоток трансформатора на выходе либо посредством оптрона. Скважность импульсов на выходе ШИМ-контроллера изменяется в зависимости от того, какой величиной характеризуется сигнал обратной связи, а он зависит от выходного напряжения. Если нет необходимости в развязке, то чаще всего применяют простой делитель резистивного типа. Это позволяет блоку питания поддерживать выходное напряжение на стабильном уровне.

Достоинства

Импульсный блок питания обладает целым рядом достоинств, особенно если сравнивать его со стабилизаторами аналогичной мощности. Меньший вес достигается благодаря тому, что при повышении частоты уместно использовать трансформаторы малых размеров при условии, что их подаваемая мощность находится на том же уровне. У линейных стабилизаторов основная масса складывается за счет тяжелых мощных силовых трансформаторов с низкой частотой, а также крупных радиаторов силовых элементов, функционирующих в линейном режиме. Повышенная частота преобразования позволяет очень сильно уменьшить габариты фильтра выходного напряжения. Тут уместно устанавливать конденсаторы меньшей емкости, в сравнении с выпрямителями, функционирующими на промышленной частоте. Выпрямитель вполне может быть выполнен по довольно простой однополупериодной схеме, что полностью исключает риск увеличения пульсаций напряжения на выходе.

Производительность

Импульсный блок питания характеризуется существенно более высоким коэффициентом полезного действия в сравнении со стабилизаторами благодаря тому, что в последних потери связаны с переходными процессами в те моменты, когда производится переключение основного элемента. Так как ключевые элементы находятся в одном из состояний, то есть они включены или выключены, речь идет о минимальных потерях электроэнергии.

Другие достоинства

Импульсные блоки питания стоят гораздо меньше, чем стабилизаторы, так в них используется унифицированная элементная база, а также ключевые транзисторы высокой мощности. Кроме того, здесь допускается использование силовых элементов меньшей мощности, так как они работают в ключевом режиме. Надежность блоков питания вполне сравнима с аналогичным параметром линейных стабилизаторов. В современной оргтехнике, вычислительной технике, а также бытовой электронике чаще всего используются именно импульсные блоки питания. А линейные на текущий момент времени сохранились только в некоторых областях:

В качестве питающих элементов для слаботочных управляющих плат высококачественной бытовой техники: микроволновых печей , стиральных машин, котлов отопления и колонок;

Для управляющих устройств малой мощности сверхвысокой и высокой надежности, рассчитанной на длительную непрерывную эксплуатацию при полном отсутствии обслуживания либо при его затруднении (например, автоматизация процессов на производстве либо цифровые вольтметры в электрических щитах).

Импульсные блоки питания отличаются широким диапазоном питающей частоты и напряжения, которые недостижимы для аналогичного по стоимости линейного оборудования. На практике это говорит о возможности применения одного и того же прибора для цифровой электроники в разных уголках мира, где имеются значительные отличия по напряжению и частоте в розетках. В большинстве современных блоков питания имеется встроенная цепь защиты от разнородных непредвиденных ситуаций, к примеру, от отсутствия нагрузок на выходе либо короткого замыкания.

Недостатки

Импульсные блоки питания обладают и определенными недостатками в сравнении с линейными. Основная часть схемы прибора работает от сети без гальванической развязки, что существенно затрудняет ремонт подобных приспособлений. Импульсный блок питания для усилителя, как и для всей прочей аппаратуры, характеризуется тем, что создает высокочастотные помехи, что связано с сами принципом его работы. Часто приходится применять определенные методы помехоподавления, которые очень часто не приводят к полному их устранению. Именно поэтому импульсные блоки питания во многих случаях невозможно использовать для некоторой аппаратуры. Обычно у этих приспособлений имеется ограничение на минимальную нагрузку в плане мощности. Если этот параметр ниже необходимого, то может просто не произойти запуска блока, либо его параметры выходного напряжения не будут укладываться в допустимые отклонения.

Устройство

Можно перечислить основные узлы блока питания. Сетевой выпрямитель выполнен из двух дросселей ЭМП, фильтра помех и развязки статики, входного сетевого предохранителя и диодного моста, откуда и питается основная схема источника. Ядро первичной цепи состоит из накопительной фильтрующей емкости, ключевого силового транзистора, схемы обратной связи, импульсного трансформатора и оптопары. Во вторичной цепи источника питания выходное напряжение поступает с вторичной трансформаторной обмотки, выпрямительных диодов, фильтрующих конденсаторов, силовых дросселей.

Принцип работы импульсных блоков питания

Сетевое напряжение поступает на выпрямитель, после чего происходит его сглаживание емкостным фильтром. С конденсатора фильтра происходит его перемещение на транзисторный коллектор, который играет роль ключа. Управляющее устройство отвечает за включение-выключение транзистора. Надежный запуск блока питания обеспечивается задающим генератором, выполненным на микросхеме. Ее питание осуществляется цепочкой резисторов. Работа оптопары регулируется ключевым транзистором и задающим генератором.

В статье речь об импульсных блоках питания (далее ИБП), которые сегодня получили самое широкое применение во всех современных радиоэлектронных устройствах и самоделках.
Основной принцип заложенный в основу работы ИБП заключается в преобразовании сетевого переменного напряжения (50 Герц) в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется.
Преобразование осуществляется с помощью мощных транзисторов, работающих в режиме ключа и импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта преобразователей: первый - выполняется по схеме импульсного автогенератора и второй - с внешним управлением (используется в большинстве современных радиоэлектронных устройств).
Поскольку частота преобразователя обычно выбирается в среднем от 20 до 50 килогерц, то размеры импульсного трансформатора, а, следовательно, и всего блока питания достаточно минимизируются, что является очень важным фактором для современной аппаратуры.
Упрощенная схема импульсного преобразователя с внешним управлением смотрите ниже:

Преобразователь выполнен на транзисторе VT1 и трансформаторе Т1. Сетевое напряжение через сетевой фильтр (СФ) подается на сетевой выпрямитель (СВ), где оно выпрямляется, фильтруется конденсатором фильтра Сф и через обмотку W1 трансформатора Т1 подается на коллектор транзистора VT1. При подаче в цепь базы транзистора прямоугольного импульса, транзистор открывается и через него протекает нарастающий ток Iк. Этот же ток будет протекать и через обмотку W1 трансформатора Т1, что приведет к тому, что в сердечнике трансформатора увеличивается магнитный поток, при этом во вторичной обмотке W2 трансформатора наводится ЭДС самоиндукции. В конечном итоге на выходе диода VD появиться положительное напряжение. При этом если мы будем увеличивать длительность импульса приложенного к базе транзистора VT1, во вторичной цепи будет увеличиваться напряжение, т.к энергии будет отдаваться больше, а если уменьшать длительность, соответственно напряжение будет уменьшаться. Таким образом, изменяя длительность импульса в цепи базы транзистора, мы можем изменять выходные напряжения вторичной обмотки Т1, а следовательно осуществлять стабилизацию выходных напряжений БП.
Единственное что для этого необходимо - схема, которая будет формировать импульсы запуска и управлять их длительность (широтой). В качестве такой схемы используется ШИМ контроллер. ШИМ - это широтно-импульсная модуляция. В состав ШИМ контроллера входит задающий генератор импульсов (определяющий частоту работы преобразователя), схемы защиты, контроля и логическая схема, которая и управляет длительностью импульса.
Для стабилизации выходных напряжений ИБП, схема ШИМ контроллера «должна знать» величину выходных напряжений. Для этих целей используется цепь слежения (или цепь обратной связи), выполненная на оптопаре U1 и резисторе R2. Увеличение напряжения во вторичной цепи трансформатора T1 приведет к увеличению интенсивности излучения светодиода, а следовательно уменьшению сопротивления перехода фототранзистора (входящих в состав оптопары U1). Что в свою очередь, приведет к увеличению падения напряжения на резисторе R2, который включен последовательно фототранзистору и уменьшению напряжения на выводе 1 ШИМ контроллера. Уменьшение напряжения заставляет логическую схему, входящую в состав ШИМ контроллера, увеличивать длительность импульса до тех пор, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. При уменьшении напряжения - процесс обратный.
В ИБП используются 2 принципа реализации цепей слежения - «непосредственный» и «косвенный». Выше описанный способ называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя. При «косвенном» слежении напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора:

Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ контроллера.
С цепью слежения я думаю, разобрались, теперь давайте рассмотрим такую ситуацию как короткое замыкание (КЗ) в нагрузке ИБП. В этом случае вся энергия, отдаваемая во вторичную цепь ИБП, будет теряться и напряжение на выходе будет практически равно нулю. Соответственно схема ШИМ контроллера будет пытаться увеличить длительность импульса для того, что бы поднять уровень этого напряжения до соответствующего значения. В итоге транзистор VT1 будет все дольше и дольше находиться в открытом состоянии, и через него будет увеличиваться протекающий ток. В конце концов, это приведет к выходу из строя этого транзистора. В ИБП предусмотрена защита транзистора преобразователя от перегрузок по току в таких нештатных ситуациях. Основу ее составляет резистор Rзащ, включенный последовательно в цепь, по которой протекает ток коллектора Iк. Увеличение тока Iк протекающего через транзистор VT1, приведет к увеличению падения напряжения на этом резисторе, а, следовательно, напряжение, подаваемое на вывод 2 ШИМ контроллера также будет уменьшаться. Когда это напряжение снизится до определенного уровня, который соответствует максимально допустимому току транзистора, логическая схема ШИМ контроллера прекратит формирование импульсов на выводе 3 и блок питания перейдет в режим защиты или другими словами отключится.
В заключении темы хотелось бы более подробно описать преимущества ИБП. Как уже упоминалось, частота импульсного преобразователя достаточно высока, в связи с чем, габаритные размеры импульсного трансформатора уменьшены, а значит, как это не парадоксально звучит, стоимость ИБП меньше традиционного БП, так как меньше расход металла на магнитопровод и меди на обмотки, даже не смотря на то, что количество деталей в ИБП увеличивается. Еще одним из достоинств ИБП является малая, по сравнению с обычным БП, емкость конденсатора фильтра вторичного выпрямителя. Уменьшение емкости стало возможным за счет увеличения частоты. И, наконец, КПД импульсного блока питания доходит до 85 %. Связано это с тем, что ИБП потребляет энергию электрической сети только во время открытого транзистора преобразователя, при его закрытии энергия в нагрузку отдается за счет разряда конденсатора фильтра вторичной цепи.
К минусам можно отнести усложнение схемы ИБП и увеличение импульсных помех излучаемым самим ИБП. Увеличение помех связано с тем, что транзистор преобразователя работает в ключевом режиме. В таком режиме транзистор является источником импульсных помех, возникающих в моменты переходных процессов транзистора. Это является недостатком любого транзистора работающего в ключевом режиме. Но если транзистор работает с малыми напряжениями (например, транзисторная логика с напряжением в 5 вольт) это не страшно, в нашем же случае напряжение, приложенное к коллектору транзистора, составляет, примерно 315 вольт. Для борьбы с этими помехами в ИБП используются более сложные схемы сетевых фильтров, чем в обычном БП.

Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…

Для этого создаются дополнительные элементы: , преобразующие напряжение одного вида в другой. Они могут быть:

    встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;

    или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.

В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:

1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;

2. импульсных блоках питания.

Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.

Трансформаторные блоки питания

Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.

После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.

За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.

Импульсные блоки питания (ИБП)

Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:

    доступностью комплектования распространенной элементной базой;

    надежностью в исполнении;

    возможностями расширения рабочего диапазона выходных напряжений.

Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.

В состав основных деталей источников питания входят:

    сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;

    накопительная фильтрующая емкость;

    ключевой силовой транзистор;

    задающий генератор;

    схема обратной связи, выполненная на транзисторах;

    оптопара;

    импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;

    выпрямительные диоды выходной схемы;

    цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;

    фильтрующие конденсаторы;

    силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;

    выходные разъемы.

Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.

Как работает импульсный блок питания

Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.

Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.

Всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Работа блоков на 12 вольт

Импульсный включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.

В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.

Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.

Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное , имеющее форму прямоугольных импульсов необходимой амплитуды.

В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.

Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.

Принципиальные схемы импульсных блоков питания

Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.

Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:

  • однополупериодную;
  • нулевую (двухполупериодную со средней точкой);
  • двхполупериодную мостовую.

Каждой из них присущи достоинства и недостатки, которые определяют область применения.

Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.

Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения .

Для однополупериодной схемы Кв=0.45.

Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.

Нулевая, или двухполупериодная схема со средней точкой , хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.

Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.

Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого . Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.

Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.

Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения U BM .

Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).

Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.

Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной U BM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.

Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.

Высокочастотный преобразователь: его функции и схемы

Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.

Однотактная схема . При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.

  1. Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
  2. Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.

Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.

Чтобы самостоятельно поменять или установить новый счетчик, не требуется особых навыков. Выбор правильной обеспечит корректный учет потребляемого тока и повысит безопасность домашней электросети.

В современных условиях обеспечения освещения как внутри помещений, так и на улице все чаще используют датчики движения. Это придает не только комфорт и удобства в наши жилища, но и позволяет существенно экономить. Узнать практические советы по выбору места установки, схем подключения можно .

Двухтактная схема со средней точкой трансформатора (пушпульная) . Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.

Двухтактная полумостовая схема . По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.

Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

Двухтактная мостовая схема . По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) I КМАХ и максимальному напряжению коллектор-эмиттер U КЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.

Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).

При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.

Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.

Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (U КЭМАХ >=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.

Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.

Видео о изготовлении простейшего импульсного питающего устройства